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For a slightly stronger assumptions on the interaction we give a very trans-
parent proof of Ruelle's result in the language of Poisson integral measure
representation for the correlation functions on the configuration space using
some kind of cluster expansion in the densities of configurations.
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1. INTRODUCTION

Proof of the existence of the correlation functions of classical statistical
mechanics in thermodynamic limit at arbitrary nonnegative values of
activity z and inverse temperature B = ( k T ) - 1 follows from their uniform
(in volume A) bounds:

This inequality was proved by D. Ruelle(1) in 1970 for pair, superstable and
lower regular potentials. It allowed to extend various results obtained by
R. L. Dobrushin and R. A. Minlos(2) for the case of potentials, which were
non-integrably divergent at the origin. The proof was based on a careful
analysis of the configurations of particles in A and partition of these con-
figurations into subsets, taking into account maximum of the particles in
bounded regions. Moreover the superstable condition allowed to show that
Gibbs factor for the configurations with charge number of particles in a
small volume decreased with a number of particles. But the proof of the
inequality (1.1) was based on a large number of technical lemmas and
propositions, which required additional constructions and calculations.
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On the other hand in the series of works(3-6) the representation for
correlation functions in a finite volume by Poisson measure integrals on
f ( R v ) (or on the space of configurations T as a carrier set of this measure)

were proposed. However, we should note that the notation of the grand
canonical measure (or in physical language ideal gas measure) as

were used long ago by many authors (see for example refs. 7-9), but the
properties of this measure and integrals were not used intensively. In the
mentioned papers(3-6) the infinite divisible property of the Poisson measure
was used to construct cluster expansion and prove their convergence.

From the point of view of the point measure theory the problem of the
construction of Gibbs modification of the Poisson free measure in thermo-
dynamic limit on the space of configurations is nontrivial mathematical
problem because of the space of configurations is nonlinear space. In the
articles by S. Albeverio, Yu. G. Kondratiev and M. R6ckner(10-11) analysis
and geometry on the configuration space were developed. As a particular
result a slight modification of the bounds (1.1) were proved (using (1.1)
and Mayer-Montroll equations):

where p(x) is 2-body interaction potential. This is more natural behaviour
of the correlation functions for small distances between particles (see also
ref. 2).

The main goal of this paper is to prove the inequalities (1.1) and (1.2)
using Poisson integral representation for the correlation functions without
additional constructions. The proof is very simple and transparent and
based on the expansion of the Poisson integral over all configurations into
the series over some kind "dense" configurations. In fact the Ruelle's idea
is realized in a very natural way in the language of Poisson measure
integrals over the space of configurations.

Nevertheless, we should note that we use a little bit stronger condi-
tions on the potential than in the original work by D. Ruelle.(1)

A short contents of this article is the following. In Section 2 we give
some notations, define the system and formulate the main result. In Sec-
tion 3 we construct Poisson integral representation and expansion over
densities of the configurations. In Section 4 we give all needed estimates to
prove the main theorem.
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2. DEFINITIONS AND MAIN RESULT

2.1. Some Notations

1°. Euclidean v-dimensional space: Rv.

2°. Lattice in Rv with a cell of length A: AZV.

3°. Elementary cubs with ribs A, centered in r e Zv:

4 = Qr(P) = {x e Rv| P(ri -1/2) < xi < P(ri + 1 / 2 ) , i = 1, . . . ,v .} , |A|= Pv

4°. The sequence of sets: (X)n = (X1,,..., Xn), A} *0,j= I,.-, n,

5°. The set of sets: {X}H = {X 1 , . . . ,X n } .

6°. R-disjoint set of sets:

{X}R= {X1,..., Xn | dist(Xi, X j) R, i = j}

1°. The union of sets: Xn = (Un = 1 Xj.

8°. The complementary set: Xc = A\X.

2.2. Definition of the System. Correlation Functions

We consider an infinite system of the classical statistical mechanics of
the point, identical particles with 2-body interaction, i.e., the energy of the
interaction of N-particles is given by the formula

where O(x) = cp(\x\) is the interaction potential. The N-particle energy
satisfies the following condition:

where Nr is the number of particles in an elementary cube A. If A = 0,
B > 0, the condition (2.1) is called stability condition; if A > 0, B > 0, the
Eq. (2.1) is called super stability condition.

The correlation functions are defined (in a finite volume A c RV) by
(see for example refs. 12-13):
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where ZA is the partition function, which is the same series at m — 0 and
z, B are nonnegative parameters (activity and inverse temperature).

In this work we consider A and its subsets as unions of elementary
cubes A. We do not discuss here the problem of boundary conditions, so
we (for convenience) consider "empty" boundary conditions.

2.3. Poisson Measure and Configuration Space

Using the definition of the Poisson measure it is easy to rewrite the
Eq. (2.2) in the form of integral (see refs. 3-6 for details):

where

nz(dyA] is an unnormalized Poisson measure with the intensity z on the
configuration space FA, so nz(FA) = jr nz(dyA] = e z | y | , yA is the projection
of a configuration y in IRV on A. Using Dirac S-function one can write

where \yA is cardinality of given configuration yA = {x 1 , . . . , x |y | } . Wick
product in the Eq. (2.4) means subtraction of the diagonal elements
(x = y). One can consider the formula (2.3) as a convenient notation of the
definition (2.2), but we will use one important property of the Poisson
measure—the infinite divisible property, i.e., if we have two functions
F^y^) and F2(yXl) and Xl r*X2 = 0, X:,X2<=A, then (see refs. 4-6 for
details):
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The exponent in the Eq. (2.5) is due to we consider unnormalized Poisson
measure. Besides the stability condition in this language is:

for any X <= A and stable energy V.

2.4. Main Result

As we mentioned in the Introduction we consider a slightly stronger
assumptions on the interaction potential:

( A l ) : (p(x) = (p + (x) + (pst(x) = (p + (x) + (p + ( x ) - ( p - ( x ) ,
(p + ( x ) ^ Q and <p + (0) is large (see (A3)),
<psl(x) satisfies the stability condition (2.6).

(A2): diam supp (p(x) = R < oo.

(A3): 3/j — t;, — 5>0, where k = inf\x\^iy; <P + (x),

where yd
A is so-called dilute configuration, which means that all xk,k =

1,..., l y ^ l belong to the different elementary cubes A = Qr()>), i.e., xkedk,
Aj n Jfr = 0 for j = k.

Remarks.

1°. Even in the case when p + (0) < oo ( A l ) is the sufficient conditions
for the potential to be superstable potential. But it is unknown (at least for
the author) an example of superstable potential which does not satisfy
( A l ) .

2°. The assumption (A2) is technical one and we believe that it can
be changed by more natural assumption of integrability at large |,x|.

3°. The assumption (A3) is very delicate and require rapidly increasing
potential at the origin. The sufficient condition for (A3) is nonintegrability
(p(x) at the origin, because at small P, v1 ~ P-v \\cp~ ||,, where | | - | | , is
L[([Rv)-norm and b~~c(p/.~

t' in the case when <p + ( .Y)~ .x| ~" at the origin.
So if u > v (and cv is large for u = v) the assumption (A3) is true.

Theorem 2.1. For the classical systems, which satisfy the assump-
tions (A1)-(A3) the correlation functions are bounded from above by:
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for any ft, z > 0, where £ = £(B, z) and V+(x)m is the energy, constructed
by (p + (x).

The proof of the theorem will be done into two steps. First we con-
struct some expansion for pA(x)m which is an expansion over densities of
configurations. The second step is the estimation of Gibbs energy on an
every given configuration.

3. CLUSTER EXPANSION IN THE DENSITIES OF
CONFIGURATIONS

The main idea of proving Theorem consist in separation dilute con-
figurations from dense configurations. To define this configurations we
define indicator function for the configuration in elementary cube A:

Then the indicator for dilute configuration we define as

and for dense configuration

To obtain decomposition we use the partition of the unite in the following
way

where a> is the map of every elementary cubes of A into the numbers +1
or — 1, u>(A)= ±1. Inserting (3.3) into (2 3) we get
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Now we define the set

Then the sum over all possible w one can rewrite as the sum over all
possible sets X=X+ in A. So the Eq. (3.5) is:

Here we use the following notation

Definition 3.1. For any X=X+ define graph GR(X) with vertices
in the centers of elementary cubes AeX and lines l(A,A'} iff dist(zf, A')
^R.

Definition 3.2. The set X=X+ is called R-connected if the
correspondent graph GR(X) is connected in ordinary way.

Then every set X = X+ can be represented as some fixed partition
{X}* (see notation 6°.) and so the sum over all possible X in A we can
change by all possible sets {X}R (for n = 0, X= 0). Further we pass from
the sum over all such sets to the sum over X1,..., Xn independently and to
remove the conditions dis t(X i , Xj}> R we introduce hard-cor potential

Then we get

Now, the last step to arrange our decomposition is the following. Define
the set
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This is fixed set (for fixed variables of correlation function P(X) m ) . Now
we split every sum over XJt j = 1,..., n into two sums: the first sum over
those Xj, which nonintersect region X% and the second one (we note it by
YI), which intersect XR. There are n!/k! (n — k}! possibilities when any k
sets Xj nonintersect XR and (n — k) sets Y, intersect X%. So the final expan-
sion is the following:

4. PROOF OF THEOREM

The first step of our estimation is to split exponent in (3.10) into three
parts, which corresponds the interactions of the particles inside the region
XR u Yn_k and the interactions between these particles and all particles of
the dilute configuration, which is in A\Xk u Yn_k. Note that interaction
between XR u Yn_k and Xk is zero due to finite range of potential. So we
have

where

and
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Now splitting the energy in the product of (4.2)

and taking into account that (due to (A.2))

(we apply to Vst the Eq. (2.6) and neglect the positive parts of the inter-
action between different elementary cubes) we get

Then using the definition (2.7) for v1 and estimating the exponent of the
positive part of energy in (4.3) by the unite we get

Now we use the property (2.5) of the measure n2(dyA) and the estimates
(4.5), (4.6) to get that

where

So as all (x)n are in the same cube
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where b is defined in (A3). So, we have

which is small for small 1 and due to (A3).
Now taking maximum of E0 in the variable Yn_k (we note this maxi-

mum value of Yn_k by Yn_k) and using the elementary estimate

we can estimate the sum over (Y)n_k. This estimate are given by the
following Lemma:

Lemma 4.1. (see ref. 14)

where c(v) is the constant, which depends only on v, and

The last step is the following. The expansion like (3.8) one can make
for partition function ZA} with At cA. Note it by

and noting by

and taking into account (4.5), (4.6), (4.8), (4.10) and (4.11) we get

The facts that ZA1 < ZA2 for yl, c A2 and (3.4) give the inequality (2.8) with

Now we prove the lemma.
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Proof of Lemma 4.1. First of all, we write that

and

Let Sk be the number of all R-connected sets Y with fixed A e Y and
| y| = Xvk. Note NI is the number of elementary cubes A' around fixed cube
A such that distf A, A'} s% R. It is clear that N{ = [c(v)(/?//l)v], where c(v) is
some constant which depends only on v, [-]-means integer part. Now, if
we consider the set T as the set of all elementary cubes A and F =
(Ai,...,An), Aj = (AJi, AJ:)(Aj ^0iffdist(^, Ah) ^R) as some collection
of its subsets, then the proof of the lemma immediately follows from the
Lemma 1.3, Chapt. 2 of ref. 14 with M = 2, K= Nt and r= 1/4K = l/4Nlt

which imply

and as a consequence the proof of the lemma.

Concluding Remark

The proof of the Main Theorem remains also true if we add to the
2-body interaction V(x)N an arbitrary finite-range many-body potential
which satisfies stability condition (2.6).
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